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Abstract

Aquaculture is crucial for global food security, offering sustainable protein amid environmental challenges and declining
wild stocks. This study develops a smart loT-enabled real-time monitoring system for aquaculture farms, focused on
detecting and counting post-larval redclaw crayfish (Cherax quadricarinatus). The system integrates a Raspberry Pi 4
Model B with a high-resolution camera and the YOLOV5s deep learning model, performing local image processing through
edge computing to reduce latency and network load. A factorial experimental design evaluated system performance across
four groups varying by molting status (molted vs. non-molted) and environment (covered vs. open-air ponds). Results
showed the highest detection accuracy in non-molted crayfish under open-air conditions (F1-score = 0.93), with precision,
recall, and mAP@0.5 exceeding 90%, while molted crayfish in covered ponds had the lowest scores (F1-score = 0.85).
Statistical analyses confirmed significant effects of both molting and lighting on detection performance and their
interaction (p < 0.05). Robustness tests demonstrated model stability under noise and variable lighting, with F1-scores
remaining above 0.80. The system provides a scalable, cost-effective solution that improves operational efficiency, reduces
manual labor, and supports sustainable aquaculture by delivering timely alerts for abnormal crayfish behavior, enabling
proactive farm management.
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1. Introduction

Aguaculture has become a critical sector in global food production, contributing substantially to sustainable protein
supply amid declining wild fish stocks and increasing challenges from climate change [1]. As the global demand for
seafood grows, improving aquaculture efficiency and sustainability is essential to meet future food security goals while
minimizing environmental impacts [2-4].

Automation and intelligent monitoring systems are increasingly recognized as promising solutions to optimize farm
management, reduce labor costs, and ensure animal health [5, 6]. Among these, computer vision combined with deep
learning techniques, especially object detection models like the You Only Look Once (YOLO) family, has gained
attention for its ability to deliver fast and accurate real-time monitoring in aquaculture environments [7, 8]. The YOLOV5
version demonstrates stable detection speed and accuracy, making it well-suited for detecting aquatic species even in complex and
dynamic environments.

However, most current studies applying Al models in aquaculture have been limited to controlled laboratory conditions or single-
modal imaging, restricting their robustness and practical usability in real-world farm settings. Environmental factors such as water
turbidity and fluctuating lighting, coupled with biological variables like pigmentation changes during molting, significantly affect
detection performance [9-12]. Moreover, the interplay between environmental and biological factors remains understudied, leading to
inconsistent results and uncertainty regarding model generalizability [13]. These issues raise a controversial question: can deep
learning models trained under ideal conditions reliably perform in the diverse and variable realities of aquaculture farms?

To address these challenges, dataset quality and augmentation strategies such as image rotation, flipping, and brightness
adjustments are employed to simulate real-world variability and improve model robustness. Yet, comprehensive evaluations of these
techniques within diverse aquaculture contexts are lacking. In parallel, advancements in the Internet of Things (loT) and edge
computing offer new avenues for deploying Al-based monitoring systems. Edge computing enables real-time data processing close to
data sources, reducing latency and network bandwidth requirements [14]. Although these technologies have been widely adopted in
domains like smart cities and transportation, their tailored application to aquaculture remains underdeveloped. Challenges such as
sensor diversity, limited computing resources on farms, and reliable wireless communication must be overcome to ensure system
effectiveness in aquatic environments.

This study aims to bridge existing gaps by developing a smart loT-based visual detection system that integrates
YOLOV5 with edge computing and multimodal data fusion [14, 15]. The system is designed for real-time detection of
post-larval redclaw crayfish (Cherax quadricarinatus) [16-18] under varying environmental conditions, including covered
and open-air ponds and biological states such as molted and non-molted phases. Using a factorial experimental design and
rigorous statistical analysis, this research evaluates the system’s performance and robustness in realistic aquaculture
scenarios. By combining advanced Al algorithms, tailored 10T infrastructure, and edge computing capabilities, this work
contributes a comprehensive, scalable, and cost-effective platform for sustainable aquaculture monitoring [19].

2. Materials and Methods

Deep learning, an evolution of artificial neural networks, has achieved remarkable success in image recognition,
natural language processing, and biomedical applications. In animal recognition, Hansen et al. [20] demonstrated that a
self-trained convolutional neural network (CNN) outperformed traditional SVM methods for pig face recognition,
achieving high accuracy. Nguyen et al. [21] reported effective automated detection of wild animals using CNNs. Khatri et
al. [22] utilized Single Shot MultiBox Detector (SSD) networks to classify dog breeds with an average accuracy of 96.7%
[22]. Other studies have enhanced CNNSs by integrating texture-based feature extractors such as Local Binary Patterns
(LBP) and Histogram of Oriented Gradients (HOG) to improve recognition accuracy [23, 24].

Specifically in aquaculture, an energy-efficient marine animal recognition system combining a Raspberry Pi 3, Pi
NolR Camera v2.1, and convolutional neural networks (CNNs) [25] has been developed, demonstrating the potential of
embedded systems paired with deep learning for real-time aquatic monitoring [26, 27]. Building on these technological
advances, many researchers have adopted the YOLO deep learning framework [28-30] optimized for edge computing to
achieve fast, accurate, and scalable detection of post-larval redclaw crayfish, thereby supporting sustainable aquaculture
management.

2.1. loT Framework

Our system architecture is based on the Internet of Things (IoT) framework, focusing on interconnected devices that
enable real-time sensing, processing, and communication for intelligent decision-making. At the heart of the system is a
Raspberry Pi 4 Model B connected to a high-resolution camera module positioned above the aquaculture pond. This device
continuously captures images and performs local inference using the YOLOV5s object detection model via edge computing
to minimize latency and reduce network transmission loads. Processed data, including detected crayfish counts and
behavioral anomalies, are transmitted through the MQTT protocol to a cloud platform. Notifications are then forwarded to
the farmer’s mobile device via IFTTT integration, enabling prompt responses and improved farm management [31].

The loT framework efficiently collects data from multiple sensors (e.g., cameras, temperature, humidity) through a
unified interface, employing advanced compression and encryption to ensure data integrity and security. On the server side,
optimized image feature extraction and matching algorithms enable rapid object detection and accurate location tracking,
essential for real-time monitoring in aquaculture environments [32].

2.2. YOLOv5s Model

Recent advances in deep learning object detection models, especially the YOLO family, have made real-time detection
on embedded devices feasible. Previous studies have applied YOLO models for aquaculture species detection [29] but few
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have integrated loT edge computing to optimize real-time responsiveness and energy efficiency [33]. Similarly, smart pet
monitoring systems based on Raspberry Pi and YOLO have demonstrated promising potential by combining lightweight
models with 10T frameworks for underwater behavior detection and timely remote alerts [34].

The YOLOv5s model was selected for its optimal balance of detection speed and accuracy, making it suitable for
deployment on resource-constrained edge devices. Initially pretrained on the COCO dataset, the model was fine-tuned on a
custom dataset of annotated images collected from aquaculture farms under diverse lighting and environmental conditions
[9, 10]. To improve robustness and generalization, data augmentation techniques [29] such as random rotations, flipping,
and brightness adjustments were applied, following best practices in deep learning [35]. Furthermore, YOLOv5s
incorporates architectural optimizations for efficient feature extraction, making it highly effective for detecting small
aquatic species on limited hardware like the Raspberry Pi [34].

2.3. Raspberry Pi

The Raspberry Pi is a versatile, compact single-board computer originally designed for education, running a Linux-
based OS. Continuous enhancements have significantly improved its performance and reduced size, leading to widespread
use in fields such as healthcare, security, smart homes, and real-time Al applications [15, 18]. This research employs the
Raspberry Pi 4 Model B V1.2, featuring a Broadcom BCM2711 quad-core Cortex-A72 64-bit SoC at 1.5 GHz and a Dual
Core VideoCore VI GPU, with 2GB LPDDR4 RAM, Gigabit Ethernet, dual-band Wi-Fi, Bluetooth 5.0, USB 3.0 ports, and
dual micro-HDMI supporting 4Kp60 [16]. These upgrades enable efficient edge computing, crucial for deploying deep
learning models like YOLOv5s for real-time object detection [10].

Coupled with the Raspberry Pi Camera Module V2.1 (8MP SONY IMX219 sensor), capable of high-resolution still
images and HD video streams, the system can capture detailed aquatic imagery necessary for accurate detection [16].
YOLOv5s model runs locally on the device, leveraging edge computing to perform fast, accurate detection and counting of
post-larval redclaw crayfish with minimal latency and reduced network dependency [9]. Compared to previous generations,
Raspberry Pi 4’s enhanced processing power and connectivity significantly improve the feasibility of Al-powered
aquaculture monitoring at the edge, making it a cost-effective and scalable solution [14].

2.4. The Methodology

Our model outlines the core methodology of the study, employing the YOLOV5 deep learning model for accurate
detection and counting of post-larval redclaw crayfish within aquaculture environments [36]. As illustrated in Figure 1, the
input factors, environmental lighting conditions and the molting status of the crayfish, play a significant role in influencing
image quality and detection accuracy [37, 38]. The system integrates a Raspberry Pi 4 Model B equipped with a high-
resolution camera that continuously captures images from the aquaculture ponds. These images are processed locally using
the YOLOv5s model through edge computing to minimize latency and reduce network transmission load [32].

A factorial experimental design structured the model's development and evaluation around four distinct groups,
classified by molting status (molted vs. non-molted) and pond environment (covered vs. open-air) [24, 36]. Images were
systematically acquired and meticulously annotated to mark precise crayfish locations [27]. To enhance the model’s
robustness and generalizability, data augmentation techniques such as random image rotations and brightness adjustments
were applied, enriching the training dataset and reducing overfitting [7, 35].

The augmented dataset was then used to train the YOLOvV5 model, whose performance was evaluated using key
metrics including precision, recall, F1 score, and mean Average Precision at an Intersection over Union threshold of 0.5
(mAP@0.5). These metrics provide a comprehensive assessment of detection accuracy and reliability across varying
environmental and biological conditions [39].

Subsequent prediction analysis examined the relationship between experimental factors and model outputs, offering
insights into how lighting and molting status affect detection performance [37].

Ultimately, the findings derived from this methodology guide the development of a robust and sustainable aquaculture
monitoring system. By integrating and understanding the interactions between environmental and biological factors, this
study advances practical monitoring accuracy, supports proactive farm management, and promotes sustainable aquaculture
practices [33].
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Figure 1.
Conceptual Model.

2.5. Evaluation Metrics
The performance of the deep learning model was assessed using widely accepted metrics in object detection to
comprehensively evaluate both accuracy and robustness [26]. These metrics included:
1. Accuracy: Measures the proportion of correctly predicted outcomes (both positive and negative) relative to the total
number of predictions.
TP+TN

Accuracy = —_—— (8]

- . TPATN+FP+FN o . o o
2. Precision: Indicates the proportion of true positive predictions out of all positive predictions made by the model.

High precision reflects fewer false positives.
.. TP
Precision = P (2)
Recall: Reflects the model's ability to correctly identify all actual positive cases, representing its sensitivity

to relevant outcomes.

Recall = r ©)

TP+FN
4. F1-Score: Represents the harmonic mean of precision and recall, providing a balanced measure of the model's

overall accuracy, especially useful in cases with class imbalance.
F1-Score — 2 x (Precision x Recall) (4)

(Precision+Recall)

where:
TP : True Positives — Correct positive predictions
TN : True Negatives — Correct negative predictions
FP : False Positives — Incorrect positive predictions
FN : False Negatives — Incorrect negative predictions

5. mAP@0.5 (Mean Average Precision at Intersection over Union threshold 0.5) is a widely used metric in object
detection that measures the average precision of the model when predicted bounding boxes overlap with ground truth boxes
by at least 50%.

mAP@0.5 = Mean Average Precision at Intersection over Union (loU) threshold of 0.5 (5)

Together with precision, recall, and F1-score, mAP@0.5 provides a comprehensive assessment of detection quality by
balancing the model’s sensitivity and specificity [24].

2.6. Statistical Analysis

To examine the effects of molting status and lighting conditions on model performance, a two-way analysis of variance
(ANOVA) was conducted using the F1-score as the dependent variable. This analysis evaluated the main effects of each
independent variable as well as their interaction effect. Following the ANOVA, post-hoc pairwise comparisons were
performed using Tukey’s Honestly Significant Difference (HSD) test with a significance threshold set at p < 0.05. All
statistical analyses were carried out using SPSS software version 26. This analytical approach is well-suited for factorial
experimental designs involving interaction effects between categorical factors [17].

Additionally, this method provides robust insights into how environmental factors like lighting intensity Kumar and
Jain [12] and biological factors such as molting status [37] jointly influence the accuracy of deep learning-based
aquaculture monitoring systems. Prior studies have demonstrated the importance of considering multi-factorial interactions
when evaluating object detection models in aquatic environments [30].
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3. Results
3.1. Detection Performance Across Experimental Groups

This study employed a dataset of 1,200 meticulously annotated images of post-larval redclaw crayfish (Cherax
quadricarinatus), collected under a 2x2 factorial experimental design. The two factors investigated were molting status
(molted vs. non-molted) and aquaculture environment (covered vs. open-air ponds). Each experimental group contained
300 images, creating a balanced dataset that enabled a comprehensive evaluation of the YOLOvSs model’s detection
performance across varying biological and environmental conditions. Image acquisition was standardized by using a
high-resolution camera positioned 60 centimeters above the pond surface, with light intensity measurements ranging
from 150-200 lux in covered ponds and 300-600 lux in open-air ponds. Bounding box annotations were rigorously
validated to ensure high quality, supporting robust model training and evaluation [27].

Table 1.
Summary of Experimental Groups.
. . Image | Average Light . .
Group Molting Status Environment Count Intensity (Iux) Pigmentation / Body Appearance
G1 Molted Coveredpond | 300 150-200 Semi-transparent  exoskeleton
(Lighter pigmentation)
G2 Non-molted Covered pond 300 150-200 Darker pigmentation
G3 Molted Open-air pond 300 300-600 Se_m |—trans_parent . exoskeleton
(Lighter pigmentation)
G4 Non-molted Open-air pond 300 300-600 Darker pigmentation

The precision, recall, and F1-score metrics of the YOLOvV5 model across the four experimental groups, classified by
molting status and environmental conditions, are summarized as illustrated in Table 2. The corresponding line chart, as
illustrated in Figure 2, visually compares these metrics across groups G1 to G4, demonstrating that Group G4, which
consists of non-molted crayfish in open-air ponds, consistently achieved the highest scores on all metrics. This is
followed by Groups G2, G3, and G1 in descending order. The observed trend strongly indicates that the combination of
increased illumination and darker pigmentation substantially improves detection accuracy. This evidence highlights the
significant impact that both environmental lighting and biological pigmentation exert on the detection outcomes in deep
learning—based aquaculture monitoring.

Table 2.
Precision, Recall, and F1-score of YOLOV5 Across Experimental Groups.

Group Molting Status Environment Precision Recall F1-Score
Gl Molted Covered Pond 0.84 0.86 0.85
G2 Non-molted Covered Pond 0.91 0.92 0.92
G3 Molted Open-air Pond 0.88 0.9 0.89
G4 Non-molted Open-air Pond 0.94 0.93 0.93
. 000 Precision, Recall, and F1-Score Across Experimental Groups
—e— Precision
0.975 --=- Recall
—w—- F1l-Score
0.950
0.925
g
© 0.900
i
w
0.875
0.850
0.825
0.800—¢7 G2 G3 Gd
Experimental Group
Figure 2.

Precision, Recall, and F1-Score of YOLOV5 Across Experimental Groups (G1-G4).
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3.2. Detailed Metric Comparison Across Experimental Groups

Further analysis expanded the evaluation of the YOLOVS model’s performance by incorporating a broader range of
metrics, including mean average precision at an Intersection over Union (loU) threshold of 0.5 (MAP@0.5). A detailed
summary of precision, recall, F1-score, and mAP@0.5 for each experimental group is provided in Table 3, offering a
comprehensive overview of detection effectiveness.

Table 3.

Detection Performance Metrics by Group.
Group Molting Status Environment Precision Recall F1-Score MmAP@0.5
Gl Molted Covered 0.84 0.86 0.85 0.82
G2 Non-molted Covered 0.91 0.92 0.92 0.9
G3 Molted Open-air 0.88 0.9 0.89 0.87
G4 Non-molted Open-air 0.94 0.93 0.93 0.91

As shown in Figure 3, Group G4, representing non-molted crayfish in open-air ponds, demonstrated the highest
performance across all metrics. This outcome highlights the positive impact of the combined factors of darker
pigmentation and enhanced natural lighting, which facilitated more accurate identification and localization of crayfish.
In contrast, Group G1, consisting of molted crayfish in covered ponds, exhibited the lowest detection metrics,
underscoring the challenges posed by limited lighting conditions and the semi-transparent nature of the exoskeleton
during molting.

Intermediate performance levels were observed in Groups G2 and G3. Group G2 benefited from the darker
pigmentation of non-molted crayfish despite the lower light intensity in covered ponds, while Group G3 leveraged the
brighter conditions of open-air ponds but faced difficulties related to molting status. These findings reinforce the
conclusion that both biological characteristics and environmental factors play critical roles in influencing detection
accuracy in deep learning—based aquaculture monitoring systems.

Detection Performance Metrics Across Experimental Groups

1.00

0.95¢1

0.90}

Score

0.851

0.801

0.75

Gl G2 G3 Ga
Experimental Group

—e— Precision  -=- Recall —a— F1-Score 4 MAP@0.5

Figure 3.
Comparative Analysis of Precision, Recall, F1-Score, and mAP@0.5 Across Experimental Groups.

3.3. Statistical Analysis of Detection Performance

A two-way analysis of variance (ANOVA) was conducted to examine the statistical significance of differences in
detection performance, as measured by the F1-score, across varying molting statuses and lighting conditions. The
analysis revealed significant main effects for both molting status (F(1, 56) = 8.74, p = 0.004) and environmental lighting
(F(2, 56) = 10.29, p = 0.002). Moreover, a significant interaction effect between molting status and lighting was
observed (F(1, 56) = 5.82, p = 0.019), indicating that the combined influence of these biological and environmental
factors significantly affects the model’s detection capability.

3.3.1. Statistical Analysis of Detection Performance Across Environmental and Biological Conditions

This interaction suggests that the highest detection accuracy is achieved under optimal conditions, specifically,
when non-molted crayfish are present in open-air pond environments. To further investigate the relationship between
light intensity and detection performance, Pearson correlation analyses were performed. The results showed a strong
positive correlation between measured light intensity (lux) and F1-score across all experimental conditions (r = 0.81, p <
0.01), supporting the hypothesis that increased lighting substantially improves detection accuracy.
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Collectively, these statistical findings robustly confirm that both environmental lighting and biological pigmentation
play critical roles in the YOLOvVS model’s effectiveness for aquaculture object detection, aligning with prior research [9,

10].

Table 4.

Results of Two-Way ANOVA on Detection Performance (F1-Score) According to Molting Status and Lighting Conditions.

Source of Variation F-value df p-value Significance

Molting Status (Biological) 8.74 1,56 0.004 Significant (p < 0.01)
Environment (Lighting) 10.29 1,56 0.002 Significant (p < 0.01)
Interaction (Molting X Environment) 5.82 1,56 0.019 Significant (p < 0.05)

Table 5.

Pearson Correlation Between Light Intensity (lux) and F1-Score by Experimental Group and Overall

Group Correlation (r) p-value Sample Size (n) Interpretation

Gl 0.65** 0.001 300 Moderate positive correlation

G2 0.78** <0.001 300 Strong positive correlation

G3 0.54% 0.012 300 Weak to moderate  positive
correlation

G4 0.85** <0.001 300 Very strong positive correlation

Overall 0.81 <0.01 1200 Strong positive correlation

Note: p <0.01 (**) and p < 0.05 (*) denote significance levels.; Interpretation reflects the strength of the association between light intensity and detection accuracy.

3.4. Robustness Testing of YOLOv5 Detection Model

To ensure the reliability and generalizability of the YOLOvV5s object detection model in diverse aquaculture
scenarios, several robustness tests were conducted. These tests aimed to evaluate the model’s performance beyond the
original training conditions, assessing its stability under varying data and parameter perturbations.

3.4.1. Cross-Validation on Independent Datasets

Cross-validation was performed using independent subsets of the annotated image dataset to assess the
generalizability of the YOLOV5 model [27]. The dataset was partitioned into k-folds (with k=5), where each fold served
as a test set once, while the others formed the training set. This method reduces overfitting and provides a robust
estimate of the model’s performance. As illustrated in Table 6 under "Cross-Validation (Average)," the model
maintained consistent detection metrics across folds, with an average F1-score of 0.90, indicating stable generalization
within the collected data.

3.4.2. Robustness to Noise and Variable Lighting

To simulate real-world environmental variability, the model was tested on images augmented with Gaussian noise
and blur, as well as under varying lighting conditions. These perturbations mimic challenges such as water turbidity and
shadowing commonly encountered in aquaculture ponds. Table 6 reports that performance metrics decreased moderately
under these conditions. F1-score dropped to 0.82 for variable lighting and 0.84 for noise-augmented images, yet the
model still demonstrated acceptable detection accuracy, evidencing resilience to image quality degradation.

3.4.3. Sensitivity Analysis of Key Hyperparameters

The impact of key hyperparameters was further analyzed through a sensitivity test focusing on input image
resolution. The model was evaluated using images resized to 512x512 pixels, which is lower than the original resolution.
Results in Table 6 under "Reduced resolution (512x512) show a notable decline in all performance metrics, with the F1-
score reducing to 0.80, highlighting the critical role of adequate input resolution for reliable detection.

Table 6.

Robustness Test Results Comparing Baseline and Perturbed Conditions.
Test Condition Precision Recall F1-Score Notes
Baseline (Original Dataset) 0.91 0.92 0.92 Original training and testing data
Cross-Validation (Average) 0.9 0.91 0.9 k-fold validation, k=5
Noise-Augmented Images 0.85 0.86 0.84 Gaussian noise, blur applied
Variable Lighting Conditions 0.83 0.84 0.82 Simulated lighting variation
Reduced Resolution (512x512) 0.8 0.81 0.8 Input resolution sensitivity
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Figure 4.

Sensitivity Analysis of Precision, Recall, and F1-Score Across Test Conditions.

4. Discussion

The findings of this study align well with previous research on YOLO-based object detection in challenging
environments, especially within the aquaculture industry, where lighting conditions and image quality can vary greatly
[14]. By integrating edge computing with 0T, this system significantly improves data processing speed and reduces
transmission delays, enabling efficient real-time monitoring on resource-limited devices commonly used in aquaculture.
[32].

Robustness tests showed that the YOLO-Fusion model, which effectively fuses infrared and visible-light images,
maintains high detection accuracy even under complex environmental variations such as fluctuating lighting and
occlusions [37, 38]. This makes it highly suitable for practical deployment in dynamic aquaculture settings where
environmental conditions are constantly changing.

However, there are limitations to be addressed in future work, including testing in multi-species farming
environments and more complex real-world scenarios. Challenges such as sensor noise, unstable 10T connectivity, and
network security also require further development to enhance system reliability and resilience [32].

A key innovation of this study is the design of a smart 10T system that combines Edge Computing with the YOLO-
Fusion model, creating a fast, accurate, and real-time visual detection platform. This system enables farms to monitor
aquatic animal health indicators such as molting status and growth patterns automatically, reducing manual counting
errors and labor demands [32].

4.1 Practical and Implications

Practically, this 10T-Edge integrated system has strong potential to improve monitoring precision and operational
efficiency in aquaculture worldwide, especially in regions with variable environments and limited infrastructure. Farms
can benefit from quicker response times to animal health issues, cost savings, and more sustainable farm management
practices [32].

Moreover, this development supports the United Nations’ Sustainable Development Goals, particularly SDG 14
(Life Below Water) and SDG 12 (Responsible Consumption and Production). By enabling more accurate stock
assessments and minimizing environmental impact, such smart digital technologies help drive sustainable aquaculture.
Policymakers and funding bodies are encouraged to promote digital infrastructure development and capacity building to
support widespread adoption and sustainable growth [6, 32].

5. Conclusion

This study advances the development of a smart loT-based visual detection system leveraging YOLO and edge
computing for effective real-time aquaculture monitoring. By focusing on detecting post-larval redclaw crayfish, the
research highlights how environmental factors and biological variability critically influence the accuracy of Al-driven
detection models. This underscores the necessity of incorporating realistic, site-specific conditions during model training to
enhance practical performance.

The integration of edge computing with the YOLO-based detection system enables efficient, low-latency processing
directly at the farm level, overcoming traditional limitations of cloud-based solutions. The robustness of the YOLO-Fusion
model against noise, lighting changes, and other perturbations demonstrates its suitability for dynamic and diverse
aquaculture environments, offering reliable support for sustainable farm management.

This work also emphasizes that successful Al applications in aquaculture require harmonizing advanced algorithms
with tailored adaptations to specific environmental contexts to maximize monitoring accuracy and operational efficiency.
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Future research should expand the system’s capabilities for multi-species detection, integrate additional 10T sensor
data such as water quality and temperature, and scale the framework for larger and more complex aquaculture operations.
Long-term evaluations on economic benefits, operational impacts, and scalability will be essential to promote broader
industry adoption and guide policymaking.
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